Abstract

Wind Turbines are the most crucial devices in wind energy conversion systems to increase energy generation efficiency from wind sources. Blade failure in wind turbines is due to the induced vibrations of change in ecological variables. It is necessary to periodically inspect the state of the wind turbine blades to enhance safety by decreasing downtime, lessening the likelihood of unplanned failures requiring extensive repair, and progressively increasing power generation with reduced logistical costs. The primary goal of the proposed research is to adopt a hybrid strategy that combines convolutional neural network models and continuous wavelet transform. The bump wavelet-based continuous wavelet transform with a convolutional neural network model is employed to classify the faulty wind turbine blades based on the extracted vibration signals of turbine blades. This approach distinguishes between different states of blade faults affecting wind turbine blades during operational phases. The research considers blade faults in the horizontal axis wind turbine, including blade bending, erosion, and the connection looseness between the hub and blade. The cross-validation and hold-out methods are used to validate the classification accuracy and are compared with other existing popular methods. The hold-out method has a better classification accuracy of 97.916%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.