Abstract

The critical issue of wheeled robot fault diagnosis is to comprehensively evaluate its health condition using multi-sensor data, but traditional deep learning-based methods are hard to model the relationships among sensor measurements. Unlike these methods, the graph convolutional network (GCN), which uses the graph-structured data along with the association graph as input, is more efficient for relationship modeling. However, existing GCN-based fault diagnosis methods suffer from the following weaknesses: 1) the association graphs are obtained according to the similarity of data samples or their features, which cannot guarantee accuracy; 2) these models are focused on spatial correlations and neglect temporal correlations. To address these problems, we propose to construct the association graph based on prior knowledge, i.e., a simplified mathematical model of the wheeled robot. Moreover, we develop a spatial-temporal difference graph convolutional network (STDGCN) for wheeled robot fault diagnosis. This network contains a difference layer that utilizes localized difference properties for feature enhancement, and the spatial-temporal graph convolutional modules are introduced to jointly capture the spatial-temporal correlations. To verify the effectiveness of STDGCN for fault diagnosis, experiments are carried out, and the results show that STDGCN achieves superior performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.