Abstract

Vibration signals extracted from rotating parts of machineries carries lot many information with in them about the condition of the operating machine. Further processing of these raw vibration signatures measured at a convenient location of the machine unravels the condition of the component or assembly under study. This paper deals with the effectiveness of wavelet-based features for fault diagnosis of a gear box using artificial neural network (ANN) and proximal support vector machines (PSVM). The statistical feature vectors from Morlet wavelet coefficients are classified using J48 algorithm and the predominant features were fed as input for training and testing ANN and PSVM and their relative efficiency in classifying the faults in the bevel gear box was compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.