Abstract
A bearing is a critical component in the transmission of rotating machinery. However, due to prolonged exposure to heavy loads and high-speed environments, rolling bearings are highly susceptible to faults, Hence, it is crucial to enhance bearing fault diagnosis to ensure safe and reliable operation of rotating machinery. In order to achieve this, a rotating machinery fault diagnosis method based on a deep convolutional neural network (DCNN) and Whale Optimization Algorithm (WOA) optimized Deep Extreme Learning Machine (DELM) is proposed in this paper. DCNN is a combination of the Efficient Channel Attention Net (ECA-Net) and Bi-directional Long Short-Term Memory (BiLSTM). In this method, firstly, a DCNN classification network is constructed. The ECA-Net and BiLSTM are brought into the deep convolutional neural network to extract critical features. Next, the WOA is used to optimize the weight of the initial input layer of DELM to build the WOA-DELM classifier model. Finally, the features extracted by the Improved DCNN (IDCNN) are sent to the WOA-DELM model for bearing fault diagnosis. The diagnostic capability of the proposed IDCNN-WOA-DELM method was evaluated through multiple-condition fault diagnosis experiments using the CWRU-bearing dataset with various settings, and comparative tests against other methods were conducted as well. The results indicate that the proposed method demonstrates good diagnostic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.