Abstract
This paper presents a novel method for fault diagnosis based on an improved wavelet package transform (IWPT), a distance evaluation technique and the support vector machines (SVMs) ensemble. The method consists of three stages. Firstly, with investigating the feature of impact fault in vibration signals, a biorthogonal wavelet with impact property is constructed via lifting scheme, and the IWPT is carried out to extract salient frequency-band features from raw vibration signals. Then, the faulty features can be detected by envelope spectrum analysis of wavelet package coefficients of the most salient frequency band. Secondly, with the distance evaluation technique, the optimal features are selected from the statistical characteristics of raw signals and wavelet package coefficients, and the energy characteristics of decomposition frequency band. Finally, the optimal features are input into the SVMs ensemble with AdaBoost algorithm to identify the different abnormal cases. The proposed method is applied to the fault diagnosis of rolling element bearings, and testing results show that the SVMs ensemble can reliably separate different fault conditions and identify the severity of incipient faults, which has a better classification performance compared to the single SVMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.