Abstract

Singular spectrum analysis (SSA) has been employed effectively for analyzing in the time-frequency domain of time series. It can collaborate with data-driven models (DDMs) such as Artificial Neural Networks (ANN) to set up a powerful tool for mechanical fault diagnosis (MFD). However, to take advantage of SSA more effectively for MFD, quantifying the optimal component threshold in SSA should be addressed. Also, to exploit the managed mechanical system adaptively, the variation tendency of its physical parameters needs to be caught online. Here, we present a bearing fault diagnosis method (BFDM) based on ANN and SSA that targets these aspects. First, a multi-feature is built from pure mechanical properties distilled from the vibration signal of the system. Relied on SSA, the measured acceleration signal is analyzed to cancel the high-frequency noise. The remaining components take part in building a multi-feature to establish a database for training the ANN. Optimizing the number of the kept components is then carried out to obtain a dataset called Tr_Da. Based on Tr_Da, we receive the optimal ANN (OANN). In the next period, at each checking time, another database called Test_Da is set up online following the same way of building the Tr_Da. The compared result between the encoded output and the output of the OANN corresponding to the input to be Test_Da provides the bearing(s) health information. An experimental apparatus is built to evaluate the BFDM. The obtained results reflect the positive effects of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.