Abstract

A new method was proposed to address fault diagnosis by applying the digital twin (DT) high-fidelity behavior and the deep learning (DL) data mining capabilities. Subsequently, the proposed fault distribution GAN (FDGAN) was built to map virtual and physical entities for the data from the established test platform. Finally, the MobileViG was employed to validate the model and diagnose faults. The accuracy of the proposed method with training samples of 600 and 800 were 88.4% and 99.5%, respectively. These accuracies surpass those of other methods based on CycleGAN (98.86%), CACGAN (94.92%), ACGAN (86.45%), ML1D-GAN (82.33%), and transfer learning (99.38%). Therefore, with the integration of global connectivity, an innovative network structure, and training methods, FDGAN can effectively address challenges such as network degradation, limited feature extraction in small windows, and insufficient model robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.