Abstract
With the increasing market share of Permanent Magnet Synchronous Motor(PMSM), the fault diagnosis and prediction technology for PMSM is becoming increasingly important. Firstly, in order to solve the problem of insufficient fault sample data consisting of negative sequence current, electromagnetic torque and other inter turn short circuit fault feature terms, the Conditional Generation Adversarial Network(CGAN) is used to expand the data set. Then, with sufficient data, Dueling_DQN algorithm of deep reinforcement learning is used to train and optimize the extended data set. Finally, the effectiveness of the algorithm in the field of PMSM fault diagnosis is verified by simulation training. The results show that the fault diagnosis accuracy of the algorithm can be reached 97.5%, while improved the convergence speed and saved the time cost of fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.