Abstract

Real-time diagnosis is required to ensure the safety, reliability, and durability of the polymer electrolyte membrane fuel cell (PEMFC) system. Two categories of methods are (1) intrusive, time consuming, or require alterations to the cell architecture but provide detailed information about the system or (2) rapid and benign but low-information-yielding. A strategy based on alternating current (AC) voltage response and one-dimensional (1D) convolutional neural network (CNN) is proposed as a methodology for detailed and rapid fuel cell diagnosis. AC voltage response signals contain within them the convoluted information that is also available via electrochemical impedance spectroscopy (EIS), such as capacitive, inductive, and diffusion processes, and direct use of time-domain signals can avoid time-frequency conversion. It also overcomes the disadvantage that EIS can only be measured under steady-state conditions. The utilization of multi-frequency excitation can make the proposed approach an ideal real-time diagnostic/characterization tool for fuel cells and other electrochemical power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.