Abstract
Conventional bearing fault diagnosis methods require specialized instruments to acquire signals that can reflect the health condition of the bearing. For instance, an accelerometer is used to acquire vibration signals, whereas an encoder is used to measure motor shaft speed. This study proposes a new method for simplifying the instruments for motor bearing fault diagnosis. Specifically, a video clip recording of a running bearing system is captured using a cellphone that is equipped with a camera and a microphone. The recorded video is subsequently analyzed to obtain the instantaneous frequency of rotation (IFR). The instantaneous fault characteristic frequency (IFCF) of the defective bearing is obtained by analyzing the sound signal that is recorded by the microphone. The fault characteristic order is calculated by dividing IFCF by IFR to identify the fault type of the bearing. The effectiveness and robustness of the proposed method are verified by a series of experiments. This study provides a simple, flexible, and effective solution for motor bearing fault diagnosis. Given that the signals are gathered using an affordable and accessible cellphone, the proposed method is proven suitable for diagnosing the health conditions of bearing systems that are located in remote areas where specialized instruments are unavailable or limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.