Abstract

This paper proposed a new method of rolling element bearing (REB) fault diagnosis for metallurgical machinery. Mainly it stresses on the combination of spectral kurtosis (SK) and supports vector machine (SVM), using genetic algorithm (GA) to optimize the parameters of support vector machine at the same time. Thus, this study aims to integrate SK, GA and SVM in order to develop an intelligent REB fault detector for metallurgical machineries. Simulation study indicates that this method can effectively detect the REB faults with a high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.