Abstract
ABSTRACT The fault diagnosis of the tail-drive of helicopter is a crucial task for helicopter system operation and maintenance. Recently, graph convolution network (GCN) has been the focus in fault diagnosis for its powerful representational ability in relationship mining. However, with the difficulty of obtaining node and edge information in the high-order domain, the stable performance of the long-range message-passing process of the deep GCN is unknown limits the application of GCN in fault diagnosis. To address these issues, a multi-grained hierarchical message graph convolutional network (MHGCN) is proposed to diagnose faults of helicopter tail-drive system. First, time-frequency characteristics of the original vibration signals are extracted to construct the graph nodes. The original graph nodes are aggregated by Louvain community detection, which can effectively learn the multi-grained features. Then, the hierarchical graph is introduced to learn the features of high-order neighbourhoods. Finally, a particular message-passing method is used to encode long-range information spanning the graph structure and realise accurate classification. Experiments on a test rig of helicopter tail-drive system are performed to verify the efficacy of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.