Abstract

In the current investigation numerical and radial basis function neural network (RBFNN) are adopted for diagnosis of fault in a cantilever composite beam structure present in form of transverse cracks. The presence of cracks a severe threat to the performance of structures and it affects the vibration signatures (Natural frequencies and mode shapes). The material used in this analysis is graphite fiber reinforced polyimide composite. The Numerical analysis is carried out by using commercially available software package ANSYS to find the relation between the change in natural frequencies and mode shapes for the cracked and un-cracked composite beam. Which subsequently used to the design of smart system based on RBFNN for forecast of crack depths and locations following inverse technique. The RBFNN controller is developed with relative natural frequencies and relative mode shapes difference as input parameters to calculate the deviation in the vibration parameters for the cracked dynamic structure. The output from the RBFNN controller is relative crack depth and relative crack location. Results from numerical analysis are comparing with experimental results having good agreement to the results predicted by the RBFNN controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call