Abstract

In this paper, we focus on medical body sensor networks collecting physiological signs to monitor the health of patients. We propose a Hidden Markov Model (HMM) based method for fault diagnosis of measured data transmitted from sensors. We firstly verify the Markov property of temporal data sequences from medical databases. Then we improve the Baum-Welch algorithm at two aspects to estimate parameters of HMMs by history training data, and use the Viterbi algorithm to determine whether the new sensor reading is faulty. Finally, we do experiments on both real and synthetic medical datasets to study the performance of the fault diagnosis method. The result shows that the proposed approach possesses a good detection accuracy with a low false alarm rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.