Abstract

This paper addresses the problem of fault detection and isolation (FDI) in wind turbine benchmark model using data driven and multi-class support vector machine (SVM) approach. Since, the fault detection is fundamental for any active system, isolation is similarly vital, and identification is decisive for fault reconfiguration as well as maintenance addition to monitoring purposes. The need for man-made dynamic system to work automatically when sensor, actuator, or system faults occur was constantly developed in order to increase reliability and decrease unavailability and maintenance costs. The key step of our approach based on extraction of mean features from sensors measurements by applying the statistical methods such as moving standard deviation and the exponential weighted moving average (EWMA). The fault detection step is invoked later based on the multi-class SVM classifier that decides the presence or not of the fault. Another important contribution of this paper is the simulation of combined sensor and actuator faults simultaneously for the first time in wind turbine benchmark model. The FDI performances are illustrated through simulation study for seven different scenario tests. The results demonstrate clearly the effectiveness of statistical and SVM approach to detect and isolate single, multiple sensor and actuator faults and outperforms many results reported in the literature for solving this problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.