Abstract
Considering the nonlinear and non-stationary characteristics of fault vibration signal in the roller bearing system, an intelligent fault diagnosis model based on wavelet transform and stacked auto-encoder is proposed. This paper firstly uses the combination of digital wavelet frame (DWF) and nonlinear soft threshold method to de-noise fault vibration signal. Then stacked auto-encoder is taken to extract the fault signal feature, which is regarded as the input of BP network classifier. The output results of BP network classifier represent fault categories. In addition, neural network ensemble method is also adopted to greatly improve the recognition rate of fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.