Abstract

The problem of fault diagnosis for dimensional integrity in multistation assembly systems is addressed in this paper. Fault diagnosis under this context is to identify the process errors which significantly contribute to the large product dimensional variation based on sensor data. The main challenges to be resolved in this paper include (1) the number of measurements is less than the process errors, which is typical in practice, but results in an ill-posed estimation problem, and (2) there exists spatial correlation among the dimensional variation of process errors, which has not been addressed yet by existing literature. A spatially correlated Bayesian learning (SCBL) algorithm to address these challenges is developed. The SCBL algorithm is based on the relevance vector machine (RVM) by exploiting the spatial correlation of dimensional variation from various process errors, which occurs in some circumstances of assembled parts and is well defined in GD&T standards. The proposed algorithm relies on a parametrized prior including the spatial correlation, and eventually leads sparsity in fault diagnosis; hence, the issues with ill-posedness and structured process errors will be addressed. A number of simulation studies are performed to illustrate the superiority of SCBL algorithm over state-of-the-art algorithms in sparse estimation problems when spatial correlation exists among the nonzero elements. A real autobody assembly process is also used to demonstrate the effectiveness of proposed SCBL algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.