Abstract

This study presents a fault diagnosis system for vehicle heating, ventilation and air conditioning (HVAC) acoustic signal with various feature extractions in deep learning neural network. Traditionally, sound used for fault diagnosis or signal classification is observed the difference of energy in time or frequency domains. Unfortunately, the frequency smearing effect often arises in some critical conditions. In the present study, discrete wavelet transform (DWT) and wavelet packet transform (WPT) are proposed in fault diagnosis. Meanwhile, when using mechanical learning methods, the data are relatively large, in order to reduce the amount of data, DWT and WPT low-frequency decomposition could be used to improve the performance. Furthermore, the signal characteristics more comprehensive, this study attempts to use the feature extraction method of wavelet packet conversion to improve the signal characteristics. In the experiment process, the operation state of the blade blower in the vehicle air conditioner, four different faults were designed, test database was established through sound to classify, and identify the data using deep neural networks to achieve the purpose of blower fault diagnosis. In data analysis, the original signal is presented through wavelet packet decomposition and discrete packet conversion technology, compared with traditional time and frequency domain signals to explore the identification rate, identification speed and related issues. Experimental results show that using WPT combined with deep neural networks have good fault diagnosis and discrimination capabilities, training, and identification time is shorter than time-frequency domain signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.