Abstract

In this paper, a novel fault detection and identification (FDI) scheme for a class of nonlinear systems is presented. First of all, an augment system is constructed by making the unknown system faults as an extended system state. Then based on the ESO theory, a novel fault diagnosis filter is constructed to diagnose the nonlinear system faults. An extension to a class of nonlinear uncertain systems is then made. An outstanding feature of this scheme is that it can simultaneously detect and identify the shape and magnitude of the system faults in real time without training the network compared with the neural network-based FDI schemes. Finally, simulation examples are given to illustrate the feasibility and effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.