Abstract
In the motor fault diagnosis technology, vibration signals can fully reflect the motor operation conditions. In this paper, a linear motor fault diagnosis method based on wavelet packet and neural network was presented. The improved neural network system was designed with variable hidden layer neurons. The network chose different numerical values depending on different situations to reach the requirements that improving diagnostic accuracy and shortening the diagnosis time. The linear motor’s normal and two common faults vibration signals were analyzed and the vibration signals energy characteristics were extracted through wavelet packet, then identified fault through neural network. The experimental results show that this method can effectively improve the motor fault diagnosis accuracy. DOI : http://dx.doi.org/10.11591/telkomnika.v12i5.4915
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA Indonesian Journal of Electrical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.