Abstract
A fault diagnostic and reconfiguration method for a cascaded H-bridge multilevel inverter drive (MLID) using artificial-intelligence-based techniques is proposed in this paper. Output phase voltages of the MLID are used as diagnostic signals to detect faults and their locations. It is difficult to diagnose an MLID system using a mathematical model because MLID systems consist of many switching devices and their system complexity has a nonlinear factor. Therefore, a neural network (NN) classification is applied to the fault diagnosis of an MLID system. Multilayer perceptron networks are used to identify the type and location of occurring faults. The principal component analysis is utilized in the feature extraction process to reduce the NN input size. A lower dimensional input space will also usually reduce the time necessary to train an NN, and the reduced noise can improve the mapping performance. The genetic algorithm is also applied to select the valuable principal components. The proposed network is evaluated with simulation test set and experimental test set. The overall classification performance of the proposed network is more than 95%. A reconfiguration technique is also proposed. The proposed fault diagnostic system requires about six cycles to clear an open-circuit or short-circuit fault. The experimental results show that the proposed system performs satisfactorily to detect the fault type, fault location, and reconfiguration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.