Abstract
In this paper, an integrated condition monitoring method combining model-based fault diagnosis and data-driven prognosis is proposed for steer-by-wire (SBW) system. First, the SBW system is modeled by bond graph (BG) technique and a two-degree-of-freedom (2-DOF) state-space model of the vehicle is built. Based on the 2-DOF model, the estimated self-aligning torque is used for the control of feedback motor. The fault detection is carried out by evaluating the analytical redundancy relations derived from the BG model. Since the fault isolation performance is essential to subsequent fault estimation process, a new fault isolation method based on finite state machine is developed to improve the isolation ability by combining the dependent and independent analytical redundancy relations, where the number of potential faults could be decreased. In order to refine the possible fault set to determine the true fault, a cuckoo search (CS)–particle filter is developed for fault estimation. Based on the estimated true fault, prognosis can be implemented which is important to achieve failure prevention and prolong system lifespan. To this end, an optimized extreme learning machine (OELM) is proposed where the input weights and hidden layer biases are optimized by CS. Based on data representing fault values obtained from the fault identification, the OELM model is trained for remaining useful life prediction of failing component. Finally, the proposed methodologies are validated by simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.