Abstract
Fault detection and diagnosis (FDD) in chemical process systems is an important tool for effective process monitoring to ensure the safety of a process. Multi-scale classification offers various advantages for monitoring chemical processes generally driven by events in different time and frequency domains. However, there are issues when dealing with highly interrelated, complex, and noisy databases with large dimensionality. Therefore, a new method for the FDD framework is proposed based on wavelet analysis, kernel Fisher discriminant analysis (KFDA), and support vector machine (SVM) classifiers. The main objective of this work was to combine the advantages of these tools to enhance the performance of the diagnosis on a chemical process system. Initially, a discrete wavelet transform (DWT) was applied to extract the dynamics of the process at different scales. The wavelet coefficients obtained during the analysis were reconstructed using the inverse discrete wavelet transform (IDWT) method, which were then fed into the KFDA to produce discriminant vectors. Finally, the discriminant vectors were used as inputs for the SVM classification task. The SVM classifiers were utilized to classify the feature sets extracted by the proposed method. The performance of the proposed multi-scale KFDA-SVM method for fault classification and diagnosis was analysed and compared using a simulated Tennessee Eastman process as a benchmark. The results showed the improvements of the proposed multiscale KFDA-SVM framework with an average 96.79% of classification accuracy over the multi-scale KFDA-GMM (84.94%), and the established independent component analysis-SVM method (95.78%) of the faults in the Tennessee Eastman process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.