Abstract
In this paper, we propose and experimentally verify a method for optimizing the fault detection sensitivity of few mode fiber (FMF) link based on high-order spatial mode trend filtering. The employment of high-order mode trend filtering as a signal processing tool identifies meaningful level shifts from FMF optical time-domain reflectometer (FMF-OTDR) profile, which is associated with the problem of the minimization of the intrinsic random noise and modal crosstalk impact on the acquired data. A FMF link fault detection system is built, and the proposed method is utilized to detect the fault loss characteristics of 7.2 km 6-mode fiber with three fusion splice points with different fusion quality, and the detection results of each mode are compared with the results obtained by FMF-OTDR. The experimental results show that our proposed method can effectively improve the low fault detection sensitivity of high-order spatial mode caused by random noise and mode crosstalk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.