Abstract

In the wind industry (WI), a robust and effective maintenance system is essential. To minimize the maintenance cost, a large number of methodologies and mathematical models for predictive maintenance have been developed. Fault detection and diagnosis are carried out by processing and analyzing various types of signals, with the vibration signal predominating. In addition, most of the published proposals for wind turbine (WT) fault detection and diagnosis have used simulations and test benches. Based on previous work, this research report focuses on fault diagnosis, in this case using the electrical signal from an operating WT electric generator and applying various signal analysis and processing techniques to compare the effectiveness of each. The WT used for this research is 20 years old and works with a squirrel-cage induction generator (SCIG) which, according to the wind farm control systems, was fault-free. As a result, it has been possible to verify the feasibility of using the current signal to detect and diagnose faults through spectral analysis (SA) using a fast Fourier transform (FFT), periodogram, spectrogram, and scalogram.

Highlights

  • Regardless of the maintenance strategies and models applied in the wind industry (WI) to detect and diagnose faults, the use of signals, such as vibration, acoustic, temperature, magnetism, and electrical signals, is an indispensable requirement

  • As described in reference [42], rotor failures are manifested by harmonics of the fundamental frequency (3, 5, 7, etc.), which reinforce the indications of bar failure

  • The analysis was carried out using various signal processing techniques, bars in the generator under study

Read more

Summary

Introduction

Regardless of the maintenance strategies and models applied in the wind industry (WI) to detect and diagnose faults, the use of signals, such as vibration, acoustic, temperature, magnetism, and electrical signals, is an indispensable requirement. Each of these types of signal have their advantages and disadvantages. Even though the current signal does not use intrusive methods, the equipment used is inexpensive, easy to install, and according to reference [4,5], both the vibration and current signal can be used to detect failures of the electric generator and loads coupled to its axis.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call