Abstract

This paper presents a novel fault detection method for gearbox vibration signatures using the synchro-squeezing transform (SST). Premised upon the concept of time-frequency (TF) reassignment, the SST provides a sharp representation of signals in the TF plane compared to many popular TF methods. Additionally, it can also extract the individual components, called intrinsic mode functions or IMFs, of a nonstationary multi-component signal, akin to empirical mode decomposition. The rich mathematical structure based on the continuous wavelet transform makes synchro-squeezing a promising candidate for gearbox diagnosis, as such signals are frequently constituted out of multiple amplitude and frequency modulated signals embedded in noise. This work utilizes the decomposing power of the SST to extract the IMFs from gearbox signals, followed by the application of both condition indicators and fault detection to gearbox vibration data. For robust detection of faults in gear-motors, a fault detection technique based on time-varying auto-regressive coefficients of IMFs as features is utilized. The sequential Karhunen–Loeve transform is employed on the condition indicators to select the appropriate window sizes on which the SST can be applied. This approach promises improved fault detection capability compared to applying condition indicators directly to the raw data. Laboratory experimental data obtained from a drivetrain diagnostics simulator and seeded fault tests from a helicopter gearbox provide test beds to demonstrate the robustness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.