Abstract
This paper proposed a novel diagnosis algorithm based on Hurst exponent and BP neural network to detect carbide anvil fault in synthetic diamond industry. Firstly, a sort of preprocessing algorithm is proposed, which uses the sliding window and energy threshold method to separate the pulse from initial continuous signal. Then, some characteristic parameters which are based on Hurst exponent are extracted from the separated pulse signal. These characteristic parameters are used to construct fault characteristic vectors. Finally, the BP neural network model was established for fault recognition. Experimental results show that the proposed fault detection method has high recognition rate of 96.7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.