Abstract

This paper investigates a state estimation set-membership approach for fault detection of a benchmark wind turbine. The main challenges in the benchmark are high noise on the wind speed measurement and the nonlinearities in the aerodynamic torque such that the overall model of the turbine is nonlinear. We use an effective wind speed estimator to estimate the effective wind speed and then using interval analysis and monotonicity of the aerodynamic torque with respect to the effective wind speed, we can apply the method to the nonlinear system. The fault detection algorithm checks the consistency of the measurement with a closed set that is computed based on the past measurements and a model of the system. If the measurement is not consistent with this set, a fault is detected. The result demonstrates effectiveness of the method for fault detection of the benchmark wind turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.