Abstract

This paper presents a sliding mode fault detection scheme for linear parameter varying (LPV) systems with uncertain or imperfectly measured scheduling parameters. In the majority of LPV systems, it is assumed that the scheduling parameters are exactly known. In reality due to noise or possibly faulty sensors, it is sometimes impossible to have accurate knowledge of the scheduling parameters and a design based on the assumption of perfect knowledge of the scheduling parameters cannot be guaranteed to work well in this situation. This paper proposes a sliding mode observer scheme to reconstruct actuator and sensor faults in a situation where the scheduling parameters are imperfectly known. The efficacy of the approach is demonstrated on simulation data taken from the nonlinear RECONFIGURE benchmark model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.