Abstract

Multivariate statistical process monitoring methods aim at detecting and identifying faults in the performance of processes over time in order to keep the process under control. Singular spectrum analysis (SSA) is a potential tool for multivariate process monitoring. It allows the decomposition of dynamic process variables or time series into additive components that can be monitored separately to identify hidden faults that may otherwise not be detectable. However, SSA is a linear method and can give misleading information when it is applied to dynamic processes with strong nonlinearity. Therefore, in this paper, nonlinear versions of SSA based on the use of auto-associative neural networks or auto-encoders and dissimilarity matrices are considered. This is done based on the benchmark Tennessee Eastman process that is widely used in the evaluation of statistical process monitoring methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.