Abstract

Fault detection is important for effective and safe process operation. Partial least squares (PLS) has been used successfully in fault detection for multivariate processes with highly correlated variables. However, the conventional PLS-based detection metrics, such as the Hotelling's T2 and the Q statistics are not well suited to detect small faults because they only use information about the process in the most recent observation. Exponentially weighed moving average (EWMA), however, has been shown to be more sensitive to small shifts in the mean of process variables. In this paper, a PLS-based EWMA fault detection method is proposed for monitoring processes represented by PLS models. The performance of the proposed method is compared with that of the traditional PLS-based fault detection method through a simulated example involving various fault scenarios that could be encountered in real processes. The simulation results clearly show the effectiveness of the proposed method over the conventional PLS method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.