Abstract

AbstractIn model‐based fault diagnosis for dynamic systems with uncertain parameters, an envelope of all fault‐free behaviors can be determined from the model and used as a reference for detecting faults. We demonstrate here a method for generating an envelope that is rigorously guaranteed to be complete, but without significant overestimation. The method is based on an interval approach, but uses Taylor models to reduce the overestimation often associated with interval methods. To speed fault detection, a method that uses bounded‐error measurement data and a constraint propagation procedure is proposed for shrinking the envelope. Several fault detection scenarios involving nonlinear, continuous‐time systems are used to evaluate this approach. © 2008 American Institute of Chemical Engineers AIChE J, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.