Abstract

Fault detection is an important issue in today’s distribution networks, the structure of which is becoming more complex. In this article, a data-based Cauchy distribution weighting M-estimate RVFLNs method is proposed for short-circuit fault detection in distribution networks. The proposed method detects short circuits based on current and voltage measurements. In addition, noises were added to the data to ensure the robustness of the method. The performance of the method was examined in the RTDS RTS simulator using the IEEE 33-bus-bar system model with the help of real-time simulations. The success rate of the proposed method is between 98% and 100% for low-impedance (0 ohm) short-circuit faults, depending on the fault type. The success rate of high-impedance (100 ohm) short-circuit faults, which are more difficult to detect, is between 80% and 92%, depending on the fault type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.