Abstract
The ability to reliably detect faults is essential in many real-world tasks that robot swarms have the potential to perform. Most studies on fault detection in swarm robotics have been conducted exclusively in simulation, and they have focused on a single type of fault or a specific task. In a series of previous studies, we have developed a robust fault-detection approach in which robots in a swarm learn to distinguish between normal and faulty behaviors online. In this paper, we assess the performance of our fault-detection approach on a swarm of seven physical mobile robots. We experiment with three classic swarm robotics tasks and consider several types of faults in both sensors and actuators. Experimental results show that the robots are able to reliably detect the presence of hardware faults in one another even when the swarm behavior is changed during operation. This paper is thus an important step toward making robot swarms sufficiently reliable and dependable for real-world applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.