Abstract

This article deals with the problem of fault detection for discrete-time Lipschitz nonlinear systems subject to a class of restricted frequency-domain specifications. We present a novel observer structure with more design parameters, which can be applied to enhance the observer performance. The performances of fault sensitivity and disturbance robustness are characterized using finite-frequency <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H_{-}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> indices, respectively. Less restrictive design conditions are obtained based on a reformulated Lipschitz property. Moreover, to detect faults timely, a novel dynamic threshold is synthesized based on zonotopic set-membership techniques. Simulation examples are conducted to demonstrate the viability and validity of the presented method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.