Abstract

ABSTRACTIn this paper, the fault detection problem is investigated for a class of discrete-time piecewise linear systems with external disturbances and infinite distributed time-delays. As a modelling framework, piecewise linear system often arise when piecewise linear components are encountered, such as dead-zone, saturation, relays and hysteresis. The time-delays are assumed to be infinitely distributed in the discrete-time domain. The aim of this paper is to detect the possible faults and to estimate the system state. For this purpose, firstly, stability analysis is given based on a piecewise smooth Lyapunov function. Afterward, an appropriate approach of fault detection and filter design problem is provided to achieve a satisfactory balance between the disturbances attenuation level γ and the sensitivity to the fault for piecewise linear systems. As a consequence, a sufficient condition is obtained in terms of the linear matrix inequalities such that, for all admissible infinite distributed time-delays and external disturbances, the system is guaranteed to be asymptotically stable and the residual is guaranteed to satisfy H∞ filtering performance and fault detection performance. At last, a simulation example is provided to demonstrate the applicability and effectiveness of the fault detection filtering scheme proposed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call