Abstract

This paper is dealt with the fault detection (FD) problem for a class of network-based nonlinear systems with communication constraints and random packet dropouts. The plant is described by a Takagi–Sugeno fuzzy time-delay model, it has multiple sensors and only one of them is actually communicated with the FD filter at each transmission instant, and the packet dropouts occur randomly. The goal is to design a FD filter such that, for all unknown inputs, control inputs, time delays and incomplete data conditions, the estimation error between the residual and ‘fault’ (or, more generally, the weighted fault) is minimized. By casting the addressed FD problem into an auxiliary H∞ filtering problem of a stochastic switched fuzzy time-delay system, a sufficient condition for the existence of the desired FD filter is established in terms of linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and applicability of the proposed technique. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.