Abstract

Equipment maintenance is a key aspect to maximize its availability. The present work focuses on data analysis of a screw conveyor of a biomass industry. The screw velocity and load were monitored and analysed, in order to detect and predict possible faults. A machine learning approach was used to detect anomalies, where different algorithms were tested with the data available, in order to train an anomaly classifier. The anomaly classifier was able to accurately identify most anomalies, based on historical data, temporal patterns and information of the maintenance interventions performed. The research carried out allowed to conclude that the Extra Trees Classifier algorithm achieved the best performance, among all algorithms tested, with 0.7974 F-score in the test set. The anomaly classifier has been shown to achieve remarkable accuracy in identifying anomalies. This research not only improves understanding of the performance of screw conveyors in biomass industries, but also highlights the practical utility of employing machine learning for proactive fault detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.