Abstract
This paper deals with fault detection and identification in dynamic systems when the system dynamics can be modeled by smooth nonlinear differential equations including affine, bilinear or linear parameter varying (LPV) systems. Two basic approaches will be considered, these apply differential algebraic and differential geometric tools. In the differential algebraic approach the state elimination methods will be used to derive nonlinear parity relations. In the specific case when a reconstruction of the fault signal is needed the dynamic inversion based approach will be investigated. This approach will also be studied from geometric point of view. The geometric approach, as proposed by Isidori and De Persis, is suitable to extend the detection filter and unknown input observer design approaches (well elaborated for LTI systems) to affine nonlinear systems. Beyond the development of the theory of fault detection and identification it is equally important to offer computable methods and to analyze the robustness properties against uncertainties. Both the observer based and the inversion based approaches will be elaborated for LPV systems that may offer computational tools inherited from linear systems and also allow to design for robustness utilizing results from H ∞ robust filtering and disturbance attenuation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.