Abstract

This paper presents a new algorithm to identify and diagnose stochastic faults in Tennessee Eastman (TE) process. The algorithm combines Ensemble Empirical Mode Decomposition (EEMD) with Principal Component Analysis (PCA) and Cumulative Sum (CUSUM) to diagnose a group of faults that could not be properly detected and/or diagnosed with previously reported techniques. This algorithm includes three steps: measurements pre-filtering, fault detection, and fault diagnosis. Measured variables are first decomposed into different scales using the EEMD-based PCA, from which fault signatures can be extracted for fault detection and diagnosis (FDD). The T2 and Q statistics-based CUSUMs are further applied to improve fault detection, where a set of PCA models are developed from historical data to characterize anomalous fingerprints that are correlated with each fault for accurate fault diagnosis. The algorithm developed in this paper can successfully identify and diagnose both individual and simultaneous occurrences of stochastic faults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.