Abstract
The paper focuses on the application of neural network techniques in fault detection and diagnosis. The objective of this paper is to detect and diagnose the faults to a continuous stirred tank reactor (CSTR). Fault detection is performed by using the error signals, where when error signal is zero or nearly zero, the system is in normal condition, and when the fault occurs, error signals should distinctively diverge from zero. The fault diagnosis is performed by identifying the amplitude error of the CSTR output error. Keywords: Fault Detection and Diagnosis; Neural Network; CSTR DOI: 10.3126/kuset.v6i2.4014Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.66-74
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Kathmandu University Journal of Science, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.