Abstract

A novel process monitoring method is proposed based on sparse principal component analysis (SpPCA). To reveal meaningful variable correlations from process data, the SpPCA is developed to sequentially extract a set of sparse loading vectors from process data. To build a high-performance monitoring model, a fault detectability matrix is applied to select the sparse loading vectors used for process modeling from all sparse loading vectors obtained by SpPCA. The fault detectability matrix ensures that the faults related to any monitored process variable are detectable in the principal component subspace and no overlapped (or redundant) loading vectors are involved in the monitoring model. Moreover, the selected sparse loading vectors classify all process variables into nonoverlapping groups according to variable correlations. Two-level contribution plots, which consist of group-wise and group-variable-wise contribution plots, are used for fault diagnosis. The first-level group-wise contribution plot describe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call