Abstract

The wheelset bearing is an indispensable part of the high-speed train, and monitoring its service performance is a concern of many researchers. Effective extraction of those impulse signals induced by the defects on the bearing elements is the key to fault detection and behaviour analysis. However, the presence of considerable noise and irrelevant components brings difficulties to extracting the wheelset bearing fault impulse signals from the measured vibration signals. This paper proposes an improved explicit shift-invariant dictionary learning (IE-SIDL) method to address this issue. Based on the shift-invariant characteristics of the wheelset bearing fault impulse signal in the time-domain, the circulant matrix is used to construct a shift-invariant dictionary and explicitly characterize the fault impulses at any time. To improve the efficiency of dictionary learning, a method of three flips is introduced to realize fast dictionary construction, and the frequency-domain reconstruction property of the circulant matrix is employed to quickly update the dictionary. Besides, an indicator-guided subspace pursuit (SP) method based on the sparsity of envelope spectrum (SES) is adopted for the sparse coding to improve sparse solution accuracy and adaptation. The effectiveness of the IE-SIDL method is proved through the simulated and experimental signals. The results demonstrate that the improved dictionary learning method has an excellent capacity in extracting fault impulse signal of the wheelset bearings, and the good time- and frequency-domain characteristics of the processed signals facilitate fault detection and behaviour analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call