Abstract

This paper presents a novel fault current management (FCM) technique for radial distribution systems with embedded inverter-based distributed generators (IB-DGs). At the point of connection to a power system, many distributed generators (DGs) require power electronic (PE) interfaces, which are normally idle during faults. The proposed FCM method employs these PE interfaces for control of the fault current. For this purpose, operation of IB-DGs is modified to FCM mode at the moment of fault and new current references are applied. Of the two controllable parameters of the IB-DG output current-current magnitude and current phase angle-the current phase angle is chosen as the means of controlling the fault current magnitude. The reference current phase angle is calculated based on the relation between the fault current elements and their phase angles. As a result of this novel operation, IB-DGs with larger capacity can be connected at different locations of the system without affecting the fault current magnitude. Also, implementing this technique in smart grids is economically proven, since the asset of power system which have been designed for normal operation are employed to manage the fault current magnitude. Moreover, possibilities of synchronization problems are reduced by keeping IB-DGs connected to the system at all the time. The evaluation of the proposed FCM technique using the standard IEEE 33-bus distribution system demonstrates the effectiveness of the proposed method for managing the fault current magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.