Abstract

This paper introduces and evaluates an auxiliary control strategy for downstream fault current interruption in a radial distribution line by means of a dynamic voltage restorer (DVR). The proposed controller supplements the voltage-sag compensation control of the DVR. It does not require phase-locked loop and independently controls the magnitude and phase angle of the injected voltage for each phase. Fast least error squares digital filters are used to estimate the magnitude and phase of the measured voltages and effectively reduce the impacts of noise, harmonics, and disturbances on the estimated phasor parameters, and this enables effective fault current interrupting even under arcing fault conditions. The results of the simulation studies performed in the PSCAD/EMTDC software environment indicate that the proposed control scheme: 1) can limit the fault current to less than the nominal load current and restore the point of common coupling voltage within 10 ms; 2) can interrupt the fault current in less than two cycles; 3) limits the dc-link voltage rise and, thus, has no restrictions on the duration of fault current interruption; 4) performs satisfactorily even under arcing fault conditions; and 5) can interrupt the fault current under low dc-link voltage conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.