Abstract
AbstractThe 150 km long central section of the San Andreas Fault (CSAF) in central California creeps at the surface and has not produced a large earthquake historically. However, sections of the San Andreas Fault to the north and south are known to have ruptured repeatedly inM~7–8 earthquakes. It is currently unclear whether the creeping CSAF could rupture in large earthquakes, either individually or along with earthquakes on the locked sections to the north and south. We invert Global Positioning System and interferometric synthetic aperture radar data with elastic block models to estimate the degree of locking on the CSAF and place bounds on the moment accumulation rate on the fault. We find that the inferred moment accumulation rate is highly dependent on the long‐term fault slip rate, which is poorly constrained along the CSAF. The inferred moment accumulation rate, normalized by shear modulus, ranges from 3.28 × 104to 5.85 × 107 m3/yr, which is equivalent to aMw = 5.5–7.2 earthquake every 150 years for a long‐term slip rate of 26 mm/yr andMw = 7.3–7.65 for a long‐term slip rate of 34 mm/yr. The comparisons of slip distributions with microseismicity and repeating earthquakes indicate a possible locked patch between 10 and 20 km depth on the CSAF that could potentially rupture withMw = 6.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.