Abstract

This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call