Abstract
We present a novel method for real-time fault classification using the time history of acoustic emissions (AEs) recorded from a lab-scale gas turbine operating under normal and faulty conditions across multiple turbine speeds. Time-frequency features are extracted using the continuous wavelet transform, and for each signal, the root mean square (RMS) and kurtosis are calculated. We employ a color mapping technique to combine the time-frequency and statistical features into a single red–green–blue (RGB) image. The red channel is mapped to the time-frequency data, whereas the green and blue channels are mapped to the RMS and kurtosis, respectively. Subsequently, a deep convolutional neural network is trained on the generated images to classify the gas turbine condition. We show that the proposed model can form an online monitoring system using AEs to classify multiple running conditions at various turbine speeds. The methodology not only achieves real-time classification of faults but also minimizes the human intervention in identifying these faults. The datasets and codes used in this paper will be openly available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.