Abstract

Multilayer perceptron (MLP) type neural networks and dynamic feature extraction techniques, namely linear prediction coding (LPC) and LPC cepstrum, are used to classify leakage type and to predict leakage flowrate magnitude in an electrohydraulic cylinder drive. Both single-leakage and multiple-leakage type faults are considered. A novel feature is that only pressure transient responses are employed as information. In addition, the feature extraction technique used to detect faults can result in a large data dimensionality reduction. The performance of two MLP models, namely serial and parallel, are studied to reflect the importance of the way data are presented to the MLP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.