Abstract
The evolution of cloud computing is increasing exponentially which provides everything as a service. Clouds made it possible to move a huge amount of data over the networks on-demand. It removed the physical necessity of resources as resources are available virtually over the networks. Emerge of new technologies improvising the cloud system and trying to overcome cloud computing challenges like resource optimization, securities etc. Proper utilization of resources is still a primary target for the cloud system as it will increase the cost and time efficiency. Cloud is a pay-per-uses basis model which needs to perform in a flexible manner with the increase and decrease in demand on every level. In general, cloud is assumed to be non-faulty but faulty is a part of any system. This article focuses on the hybridization of Neural networks with the harmony Search Algorithm (HSA). The hybrid approach achieves a better optimal solution in a feasible time duration in the faulty environment to improve the task failure and improve reliability. The harmony Search approach is inspired from the music improvisation technique, where notes are adjusted until perfect harmony is matched. HS (Harmony search) is chosen, as it is capable to provide an optimal solution in a feasible time, even for complex optimization problems. An ANN-HS model is introduced to achieve optimal resource allocation. The presented model is inspired by Harmony Search and ANN. The proposed model considers multi-objective criteria. The performance criteria include execution time, task failure count and power consumption(Kwh).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.